Honghao Zhu

honghaoz@andrew.cmu.edu | (352) 226–3389 | adrienzhh.github.io/honghao/ | www.linkedin.com/in/zhu-honghao

Education

C arnegie Mellon University Master of Science in Mechanical Engineering-Research GPA: 3.98/4.0	09/2022 – 05/2024 Pittsburgh, PA
Selected Courses: Robot Dynamics and Analysis, Robot Localization and Mapping, Computer Vision, Optim	
Georgia Institute of Technology, College of Engineering Bachelor of Science in Mechanical Engineering, Minor in Computer Science GPA: 3.67/4.0 (Highest Honor)	08/2018 – 08/202 Atlanta, Ga
ublication	
Shibo Zhao*, Honghao Zhu* (*equal contribution) et al., <i>SuperLoc: The Key to Robust LiDAR-Inertial Locali</i> Alignment Risks, under review at ICRA 2025 <u>arXiv</u> <u>Video</u> <u>Website</u>	
Sean J. Wang, Honghao Zhu et al., <i>Pay Attention to How You Drive: Safe and Adaptive Model-Based Reinforce Road Driving</i> , accepted at ICRA 2024 <u>arXiv <u>Video</u></u>	ement Learning for Off
esearch Experience	
CRA 2025] SuperLoc: Robust Localization through Predicting Alignment Risk, Pittsburgh, PA	03/2024 – Present
dvisor: <u>Aaron Johnson</u> , <u>Sebastian Scherer</u> Designed and integrated a localization module for analyzing trajectory results and providing a ground trut Conducted predict alignment risk and observability estimation to enable early LiDAR degeneracy detection Active sensor fusion based on predict alignment risk for robust performance and numerical stability Implemented and open-sourced Robustness Metrics for trajectory evaluation using Python Result in 49.7% performance increase compared to other SOTA LiDAR-Inertial odometry method	
ICRA 2024] Pay Attention to How You Drive, Pittsburgh, PA	06/2023 - 09/2023
dvisor: <u>Aaron Johnson</u> Proposed a novel transformer and LSTM-based model for autonomous four-wheel robot driving in diverse Enhanced pipeline adaptability by 41% by integrating real-time state-action sequence feedback into LSTM Optimized framework pipeline, achieving efficient communication between three modules at a 10 Hz path	model
ightweight LiDAR-Inertial Odometry with Scene Graph Representation, Pittsburgh, PA	03/2024 – Present
dvisor: <u>Sebastian Scherer</u> Implemented support for Livox-Mid360 in <u>SuperOdometry</u> Implement RGB colorization support to enable realistic 3D map construction Generated 3D scene graph from semantic representation using colorized 3D map <u>Demo Video</u>	
nertial Navigation Learning for Shaky Perception, Pittsburgh, PA	09/2022 – Present
dvisor: <u>Aaron Johnson</u> , <u>Sebastian Scherer</u> Designed and trained CNN and GRU networks for IMU measurement correction and motion prediction Implemented Pose Graph Optimization using PyPose library for IMU and motion network trajectory fusior	
Robotic Arm Graffiti Painting, Atlanta, GA	08/2021-08/202
dvisor: <u>Frank Dellaert</u> Simulated painting and paint-dipping actions using a Franka Emika Panda robotic arm with ROS MoveIt ar Created demo video showcasing robotic arm painting capabilities <u>Demo Video</u>	nd Gazebo
Iidea Research Intern , Shanghai, China	04/2021-08/202
Designed and implemented test standard sheets for evaluating sensors, including LiDAR and RGB-D units manufacturers; optimized sensor budget by 40% through cost-effective selection based on testing outcom	
cademic Projects	
Receding Horizon State Estimator, Pittsburgh, PA	02/2024 – 05/2024
Implemented receding horizon state estimator in Julia for SpaceX Dragon1 docking simulation	00/2024 40/202
	08/2021 - 12/202
Automated Wheel System Design Project, Atlanta, GA Designed and developed an autonomous wheel system using Arduino, 3D modeling, fabrication, and 3D pr	inting